## General, Robust, and Stereocomplementary Preparation of $\beta$ -Ketoester Enol Tosylates as Cross-Coupling Partners Utilizing TsCI-*N*-Methylimidazole Agents

Hidefumi Nakatsuji, Kanako Ueno, Tomonori Misaki, and Yoo Tanabe\*

Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan tanabe@kwansei.ac.jp

Received March 3, 2008



We have developed a general, robust, and cost-effective method for the (*E*)- or (*Z*)-stereocomplementary enol tosylation of  $\beta$ -ketoesters using TsCl-*N*-methylimidazole (NMI)-Et<sub>3</sub>N or LiOH. TsCl coupled with NMI formed a highly reactive *N*-sulfonylammonium intermediate. Stereocongested secondary alcohols were smoothly sulfonylated using Ts(Ms)Cl-NMI-Et<sub>3</sub>N.  $\beta$ -Ketoesters underwent (*E*)-selective tosylation using TsCl-NMI-Et<sub>3</sub>N and (*Z*)-selective tosylation using TsCl-NMI-LiOH (total of 23 examples; 60%-99% yield). Stereoretentive Negishi and Sonogashira couplings using enol tosylates proceeded successfully to give trisubstituted  $\alpha$ , $\beta$ -unsaturated esters.

Tosylation and mesylation of alcohols are well-recognized fundamental processes in various fields of organic synthesis.<sup>1</sup> In our continuing study of mild, practical, and cost-effective condensation reactions, we reported four pyridine-free methods that utilized TsCl and a sterically uncongested amine system.<sup>2</sup> This protocol was applied in natural product synthesis and process chemistry, for example, vinblastine,<sup>3</sup>

10.1021/ol800480d CCC: \$40.75 © 2008 American Chemical Society Published on Web 05/09/2008

fluorescent amino acid derivatives,<sup>4</sup> and flumioxadine.<sup>5</sup> We present herein highly efficient (*E*)- and (*Z*)-stereocomplementary enol tosylations of  $\beta$ -ketoesters utilizing TsCl–*N*-methylimidazole (NMI)–Et<sub>3</sub>N or LiOH (Scheme 1).

NMI is an efficient promoter of the condensation reactions, O-, N-, and S-acylations, esterification, amide formation, and thioesterification,<sup>6</sup> as well as C-acylation (crossed Ti–Claisen condensation).<sup>7</sup>

With this information taken into account, the fundamental tosylation reactivity was monitored using 3-octanol with a  $TsCl-NMI-Et_3N$  (most available tertiary amine) reagent

ORGANIC LETTERS 2008 Vol. 10, No. 11

2131-2134

<sup>(1)</sup> Smith, M. T.; March, J. Advanced Organic Chemistry, 5th ed.; Wiley: New York, 2001; p 576.

<sup>(2) (</sup>a) Tanabe, Y.; Yamamoto, H.; Yoshida, Y.; Miyawaki, T.; Utsumi, N *Bull. Chem. Soc. Jpn.* **1995**, *68*, 297. (K<sub>2</sub>CO<sub>3</sub>-cat. Et<sub>3</sub>N-cat. Me<sub>3</sub>N·HCl).
(b) Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, T. *Tetrahedron*, **1999**, *55*, 2183. (Et<sub>3</sub>N-cat. Me<sub>3</sub>N·HCl). (c) Yoshida, Y.; Shimonishi, K.; Sakakura, Y.; Okada, S.; Aso, N.; Tanabe, Y. *Synthesis* **1999**, 1633. [(Me<sub>2</sub>N(CH<sub>2</sub>)<sub>n</sub>NMe<sub>2</sub>)]. (d) Morita, J; Nakatsuji, H.; Misaki, T.; Tanabe, Y. *Green Chem.* **2005**, *7*, 711. [cat. BnNMe<sub>2</sub> (BuNMe<sub>2</sub>)/H<sub>2</sub>O/pH ~10].

<sup>(3) (</sup>a) Yokoshima, S.; Ueda, T.; Kobayashi, S.; Sato, A.; Kuboyama, T.; Tokuyama, H.; Fukuyama, T. *J. Am. Chem. Soc.* **2002**, *124*, 2137. (b) Miyazaki, T.; Yokoshima, S.; Simizu, S.; Osada, H.; Tokuyama, H.; Fukuyama, T. *Org. Lett.* **2007**, *9*, 4737.

<sup>(4)</sup> Hudgins, R. P.; Huang, F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556.

<sup>(5)</sup> Yoshida, R.; Sakai, M.; Sato, R.; Haga, T.; Nagano, E.; Oshio, H.; Kamoshita, K. *Proceedings of the Brighton Crop Protection Conference–Weeds*; BCPC: Hampshire, U.K., 1991; p 69.

<sup>(6)</sup> Wakasugi, K.; Iida, A.; Misaki, T.; Nishii, Y.; Tanabe, Y. Adv. Synth. Catal. 2003, 345, 1209.

**Scheme 1.** Tosylations of Alcohols and  $\beta$ -Ketoesters Using a TsCl-*N*-Methylimidazole (NMI)-Et<sub>3</sub>N or LiOH System



(Table 1). The combination of NMI and  $Et_3N$  exhibited a remarkable synergistic effect (entries 1-4).<sup>8</sup> In contrast, the

Table 1. Powerful Sulfonylation of Alcohols

|       | IS(MS)CI ( | 1.5 equiv) - NN   | II - Et <sub>3</sub> N    |          |                                          |
|-------|------------|-------------------|---------------------------|----------|------------------------------------------|
|       | / Tolue    | ne, 20 - 25 °C, 1 | lh                        | 15(1015) |                                          |
| entry | ROH        | NMI / equiv       | Et <sub>3</sub> N / equiv |          | yield / %                                |
| 1     | OH         | none              | 1.5                       | Ts       | NR                                       |
| 2     |            | 1.5               | none                      |          | 24                                       |
| 3     |            | 3.0               | none                      |          | 24                                       |
| 4     |            | 1.5               | 1.5                       |          | 94                                       |
| 5     |            | 1.5<br>(DMAP)     | 1.5                       |          | NR                                       |
| 6     |            |                   |                           | Ms       | 98                                       |
| 7     | UIIIII OH  | 1.5               | 1.5                       | Ts       | 93                                       |
| 8     |            |                   |                           | Ms       | 99                                       |
| 9     |            | 1.5               | 0.1                       | Ts       | 96                                       |
| 10    | £          |                   |                           | Ms       | 95                                       |
| 11    | OH         | 1.5               | 1.5                       | Ts       | 90 <sup>a</sup><br>(36 <sup>a, b</sup> ) |
| 12    |            |                   |                           | Ms       | 99 <sup>a</sup>                          |

<sup>*a*</sup> Chlorobenzene ( $C_6H_5Cl$ ) was used instead of toluene. <sup>*b*</sup> Et<sub>3</sub>N-Me<sub>3</sub>N-HCl<sup>2a</sup> was used instead of NMI-Et<sub>3</sub>N.

use of DMAP, a super acylation catalyst, instead of  $Et_3N$  resulted in no reaction (entry 5). Stereocongested secondary alcohols, such as *l*-menthol, methyl mandelate, and 3,3-dimethyl-2-butanol, underwent the present reaction to give the desired tosylates (entries 7, 9, 11). Relevant mesylations also proceeded more smoothly (entries 8, 10, 12). This might

be the most powerful and fastest method among the reported amine-promoted sulfonylations (entry 11).

A plausible mechanism for this observation is as follows (Scheme 2). The NMI reagent captures TsCl to form a highly



reactive *N*-sulfonylammonium intermediate, which in turn condenses with an alcohol to produce a tosylate assisted by Et<sub>3</sub>N, while releasing Et<sub>3</sub>N•HCl. Careful <sup>1</sup>H NMR (300 MHz) monitoring of a mixture of TsCl and NMI in CD<sub>3</sub>CN rationally supported the present hypothesis; the generation of a *N*-sulfonylammonium intermediate was unambiguously detected.<sup>9</sup> The apparent downfield chemical shift of NMI moieties in the intermediate is related to the higher sulfonylation reactivity of the present system in accordance with a relevant discussion.<sup>8a</sup> This successful result prompted us to investigate stereoselective enol tosylation of  $\beta$ -ketoesters.

(*E*)- or (*Z*)-Stereofixed enol sulfonates are recognized as useful cross-coupling partners. Enol triflates are generally used for this purpose,<sup>10</sup> but they have two drawbacks particularly for process chemistry: instability and high cost. Despite its high demand, there have been few investigation of enol tosylation. Recently, the Merck process group disclosed a notable stereocomplementary tosylation method for a sole specific  $\gamma$ -amino- $\beta$ -ketoester using Ts<sub>2</sub>O and Et<sub>3</sub>N or LDA.<sup>11</sup> They rationally point out the advantage over enol triflates with regard to stability and benchtop handling procedures, etc. Expensive reagents (Ts<sub>2</sub>O and LDA) and low temperature (-50 °C) for 3 h were, however, required.<sup>12</sup>

Our initial investigation was guided by the tosylation of methyl acetoacetate using TsCl $-NMI-Et_3N$  or other bases (Table 2). The use of  $Et_3N$  successfully promoted the (*E*)-selective tosylation (entry 1), which is consistent with the reported reaction using Ts<sub>2</sub>O and Et<sub>3</sub>N.<sup>11</sup>

Lithium reagents ("BuLi, LDA, LiHMDS, 'BuOLi) promoted the (*Z*)-selective tosylation (entries 3-5, 8), whereas the use of KHMDS and NaHMDS decreased the selectivity (entries 6 and 7). More practical and robust LiOH exhibited

<sup>(7) (</sup>a) Misaki, T.; Nagase, R.; Matsumoto, K.; Tanabe, Y. J. Am. Chem. Soc. 2005, 127, 2854. (b) Iida, A.; Nakazawa, S.; Okabayashi, T.; Horii, A.; Misaki, T.; Tanabe, Y. Org. Lett. 2006, 8, 5215. (c) Iida, A.; Nakazawa, S.; Nakatsuji, H.; Misaki, T.; Tanabe, Y. Chem. Lett. 2007, 36, 48. We have been pointing out that NMI is superior to DMAP for acylation reactions with regard to reactivity, cost, and toxicity [NMI (rat LD<sub>50</sub>, oral, 1130 mg/kg) and DMAP (56 mg/kg)]

<sup>(8)</sup> This observation resembles the precedent reports of esterification and amide formations promoted by combined bases NMI and TMEDA. (a) Nakatsuji, H.; Morita, J.; Misaki, T.; Tanabe, Y *Adv. Synth. Catal.* **2006**, *348*, 2057. (b) Nakatsuji, H.; Morimoto, M.; Misaki, T.; Tanabe, Y. *Tetrahedron* **2007**, *50*, 12071.

<sup>(9)</sup> NMI [ $\delta$  3.63 (s, 3H), 6.89 (s, 1H), 6.95 (s, 1H), 7.38 (s, 1H)] and **A** [ $\delta$  2.39 (s, 3H), 3.93 (s, 3H), 7.46–7.48(m, 2H), 7.70. (s, 1H), 8.02 (s, 1H), 8.03 (s, 1H), 8.04 (s, 1H)

 <sup>1</sup>H), 8.12-8.15 (m, 2H), 11.05 (s, 1H)]. A chart was described in ESI.
 (10) For a recent example Hansen, A. L.; Skrydstrup, T. J. Org. Chem.
 2005, 70, 5997.

<sup>(11)</sup> Baxter, J. M.; Steinhuebel, D.; Palucki, M.; Davies, I. W. Org. Lett. 2005, 7, 215.

<sup>(12)</sup> Klapars, A.; Campos, K. R.; Chen, C-y.; Volante, R. P. *Org. Lett.* **2005**, 7, 1185. TsCl is ca. 1/10 more inexpensive than Ts<sub>2</sub>O. It was commented that the use of TsCl caused  $\alpha$ -chlorination as a side reaction.

 Table 2. Tosylation of Methyl Acetoacetate Using

 TsCl=NMI-Bases

|                                | TsCl (1.5<br>Base (1.       | 5 equiv) - NMI (1.5<br>5 equiv) | equiv) -<br>OT: | s OT                        | rs            |
|--------------------------------|-----------------------------|---------------------------------|-----------------|-----------------------------|---------------|
|                                | 021010                      | / solvent                       | (E)             | CO <sub>2</sub> Me (Z)      |               |
| entry                          | base                        | temp / °C                       | solvent         | yield / $\%^a$              | $E \ / \ Z^a$ |
| 1                              | $\mathrm{Et}_{3}\mathrm{N}$ | 20 - 25                         | $C_6H_5Cl$      | 92                          | 98/2          |
| 2                              |                             |                                 |                 | $trace^{a}$                 |               |
| 3                              | <sup>n</sup> BuLi           | -50 to $-45$                    | THF             | 80                          | 3/97          |
| 4                              | LDA                         |                                 |                 | 70                          | 8/92          |
| 5                              | LiHMDS                      |                                 |                 | 39                          | 10/90         |
| 6                              | KHMDS                       |                                 |                 | 23                          | 35/65         |
| 7                              | NaHMDS                      |                                 |                 | 69                          | 39/61         |
| 8                              | <sup>t</sup> BuOLi          | $0 \rightarrow 20 - 25$         | $C_6H_5Cl$      | 68                          | 7/93          |
| 9                              | $Li_2CO_3$                  |                                 |                 | NR                          |               |
| 10                             | LiCl                        |                                 |                 | NR                          |               |
| 11                             | LiOH                        |                                 |                 | 86                          | 4/96          |
| 12                             |                             |                                 |                 | $trace^{b}$                 |               |
| <sup><i>a</i></sup> De<br>NMI. | termined by 1               | H NMR of the                    | crude produ     | icts. <sup>b</sup> In the a | ubsence of    |

markedly higher reactivity and (*Z*)-selectivity (entry 11). The absence of NMI resulted in no reaction (entries 2 and 12).

The proposed mechanism is illustrated in Scheme 3. In Method A using Et<sub>3</sub>N, the reaction does not proceed via chelation to give (E)-products, whereas in Method B using LiOH, the reaction proceeds via a Li-chelation pathway to give (Z)-products.



Table 3 lists the substrate-generality of the present enol tosylation. The salient features are as follows: (i) All substrates examined produced good to excellent results in yield and (*E*)- and (*Z*)-stereoselectivity. (ii) Double bonds,  $\omega$ -chloro, and methyl ester functionalities were tolerated (entries 9–14). (iii) Sterically congested  $\beta$ -ketoesters and  $\alpha$ -substituted  $\beta$ -ketoesters could also be applied (entries 15–23).

To demonstrate the present method, we focused our attention on the stereoretentive cross-coupling of enol tosylates. Table 4 lists the Negishi cross-coupling<sup>13</sup> of various enol tosylates. The present reaction proceeded under milder

conditions than for the corresponding Suzuki-Miyaura coupling.<sup>10</sup>

## **Table 3.** Enol Tosylation of $\beta$ -Keto Esters by TsCl-NMI-Bases

| Method A               | TsCl (1.5 equi<br>equiv) - Et <sub>3</sub> N ( | v) - NMI (1.5<br>1.5 equiv)      | OTs                                                |
|------------------------|------------------------------------------------|----------------------------------|----------------------------------------------------|
| (1)                    | / C <sub>6</sub> H <sub>5</sub> Cl, 20         | - 25 ℃, 1 h                      | R <sup>™</sup> ⊂<br>CO <sub>2</sub> R <sup>2</sup> |
| R <sup>1</sup> > 002/1 | TsCl (1.5 equi<br>equiv) - LiOH                | v) - NMI (1.5<br>(1.5 equiv)     | OTs                                                |
| Method B               | / C <sub>6</sub> H <sub>5</sub> Cl,            | 0 - 5 °C, 1 h<br>20 - 25 °C, 1 h | $R^{1}$ $CO_{2}R^{2}$                              |

| entry | $R^1CO_2R^2$          | method <sup>a</sup> | product    | yield / %         | $E/Z^{b}$ |
|-------|-----------------------|---------------------|------------|-------------------|-----------|
| 1     | <u> </u>              | А                   | 1a         | 92                | 98 / 2    |
| 2     | CO <sub>2</sub> Me    | В                   | 1 b        | 86                | 4 / 96    |
| 1     | 0                     | А                   | 2a         | 92                | 98 / 2    |
| 2     | CO2Et                 | В                   | 2b         | 81                | 2 / 98    |
| 3     | , CO₂Et               | А                   | <b>3</b> a | 99                | 95 / 5    |
| 4     |                       | В                   | <b>3</b> b | 74                | 1 / 99    |
| 5     | 0<br>                 | А                   | <b>4</b> a | 92                | 98 / 2    |
| 6     | CO <sub>2</sub> Me    | В                   | 4b         | 81                | 1 / 99    |
| 7     | 0                     | А                   | 5a         | 91                | 98 / 2    |
| 8     | Ph CO <sub>2</sub> Me | В                   | 5b         | 84                | 3/ 97     |
| 9     |                       | А                   | 6a         | 97                | 95 / 5    |
| 10    | Ph CO <sub>2</sub> Me | В                   | 6b         | 87                | 5 / 95    |
| 11    |                       | А                   | 7a         | 95                | 96 / 4    |
| 12    |                       | В                   | 7b         | 89                | 2/ 98     |
| 13    |                       | А                   | <b>8</b> a | 80                | 95 / 5    |
| 14    | CI CO <sub>2</sub> Me | В                   | 8b         | 72                | 3 / 97    |
| 15    | V II                  | А                   | 9a         | 97                | 96 / 4    |
| 16    | CO <sub>2</sub> Me    | В                   | 9b         | 85                | 4 / 96    |
| 17    |                       | А                   | 10a        | 89                | 97 / 3    |
| 18    |                       | В                   | 10b        | 66                | 2 / 98    |
| 19    | CO <sub>2</sub> Me    | А                   | 11a        | 73                | 94 / 6    |
| 20    |                       | В                   | 11b        | 60                | 1 / 99    |
| 21    | CO <sub>2</sub> Et    | А                   | 12a        | 86 <sup>c,d</sup> | >99 / 1   |
| 22    | Í                     | В                   | 12b        | 84 <sup>c</sup>   | <1 / 99   |
| 23    | CO <sub>2</sub> Et    | В                   | 13         | 91°               | _         |

<sup>*a*</sup> **General Procedure. [Method A]** TsCl (1.50 mmol) in chlorobenzene (1.0 mL) was added to a stirred solution of a β-ketoester (1.00 mmol), NMI (1.50 mmol), and Et<sub>3</sub>N (1.5 mmol) in C<sub>6</sub>H<sub>5</sub>Cl (1.0 mL) at 20–25 °C and the mixture was stirred for 1 h. Water was added to the stirred mixture, which was extracted with EtOAc. The organic phase was washed with 1 M HCl and brine, dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated. The obtained crude product was purified by SiO<sub>2</sub>column chromatography (hexane–AcOEt = 20:1–5:1) to give the desired product. [Method B] TsCl (1.50 mmol) in chlorobenzene (1.0 mL) was added to the stirred solution of a β-ketoester (1.00 mmol), NMI (1.50 mmol), and LiOH (1.5 mmol) in C<sub>6</sub>H<sub>5</sub>Cl (1.0 mL) at 0–25 °C for 1 h. Similar workup as for Method A gave the desired products. <sup>*b*</sup> Determined by <sup>1</sup>H NMR of the crude products. <sup>*c*</sup> In CH<sub>2</sub>Cl<sub>2</sub>. <sup>*d*</sup> TMEDA was used instead of Et<sub>3</sub>N.

<sup>(13)</sup> Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821.

Table 4. Stereoretentive Negishi Coupling of Enol Tosylates

| OTs   | $R^3Zn^4$                               | CI (1.2 €      | equiv), Pd cat. | (0.01 | equiv)              | $\mathbb{R}^{3}$                      |
|-------|-----------------------------------------|----------------|-----------------|-------|---------------------|---------------------------------------|
| $R^1$ | 5002R                                   | / THF, 2       | 20 – 25 °C, 2 h |       | R <sup>1</sup>      | J. 00211                              |
|       |                                         |                | <i>E</i> ;      | Pd(Pl | $Ph_{3})_{2}Cl_{2}$ | ː; Pd(PPh <sub>3</sub> ) <sub>4</sub> |
| entry | R                                       | R <sup>2</sup> | R <sup>3</sup>  |       | product             | yield / % <sup>a</sup>                |
| 1     |                                         |                | <b>.</b>        | (E)   | 14a                 | 84                                    |
| 2     | Ме                                      | Me             | Ph              | (Z)   | 14b                 | 94                                    |
| 3     |                                         |                | ci-             | (E)   | 15a                 | 83                                    |
| 4     | Me                                      | Me             | \/ ·            | (Z)   | 15b                 | 81                                    |
| 5     | Me                                      | Ma             | CI              | (E)   | 16a                 | 85                                    |
| 6     |                                         | NIC.           | < <u> </u>      | (Z)   | 16b                 | 87                                    |
| 7     |                                         |                | Me              | (E)   | 17a                 | 84                                    |
| 8     | Me                                      | Me             | \/              | (Z)   | 17b                 | 84                                    |
| 9     | Me                                      |                | MeO-            | (E)   | 18a                 | 81                                    |
| 10    |                                         | Me             |                 | (Z)   | 18b                 | 95                                    |
| 11    | D-                                      |                | Ph              | (E)   | 19a                 | 87                                    |
| 12    | Pr                                      | Et             |                 | (Z)   | 19b                 | 90                                    |
| 13    | A to a                                  | Мо             | Ph              | (E)   | 20a                 | 81                                    |
| 14    | × () <sub>8</sub>                       | we             |                 | (Z)   | <b>2</b> 0b         | 84                                    |
| 15    |                                         | ·              | Ph              | (E)   | <b>2</b> 1a         | 87                                    |
| 16    |                                         | we             |                 | (Z)   | 21b                 | 84                                    |
| 17    | <br>У ъ                                 | Me             | Ph              | (E)   | 22a                 | 92 <sup><i>b,c</i></sup>              |
| 18    | <u> </u>                                | IVIG           |                 | (Z)   | 22b                 | 74 <sup>c</sup>                       |
| 19    | D1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Мо             | Dh              | (E)   | 23a                 | 75                                    |
| 20    | Ph´ `` '                                | IVIE           | M               | (Z)   | 23b                 | 83                                    |

 $^a$  R<sup>3</sup>MgBr (1.20 mmol) in THF (1.0 mL) was added to a stirred solution of ZnCl<sub>2</sub> (1.20 mmol) in THF (1.0 mL) at 0–5 °C under an Ar atomosphere, and the mixture was stirred for 30 min. To the mixture was successively added an (*E*)- or (*Z*)-enol tosylate (1.00 mmol) in THF (1.0 mL) and Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> (0.01 mmnol), followed by stirring at 20–25 °C for 1 h.  $^b$  Pd(PPh<sub>3</sub>)<sub>4</sub> was used instead of Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>.  $^c$  15 h.

Table 5 lists the application to the Sonogashira coupling.<sup>14</sup> The reaction using (*E*)-substrates proceeded within 2 h using Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub> catalyst, whereas (*Z*)-substrates required 14 h using Pd(PPh<sub>3</sub>)<sub>4</sub>catalyst.

All reactions examined (Tables 4 and 5) were successfully performed in good to excellent yield with nearly complete stereoretention.

In conclusion, we developed a general, robust, and (*E*)and (*Z*)-enol tosylation of  $\beta$ -ketoesters promoted by  
 Table 5. Stereoretentive Sonogashira Coupling of Enol Tosylates

|                |                                     | R <sup>3</sup>                      | ━−н (          | 1.5 equiv         | r),                  | D <sup>3</sup>         |
|----------------|-------------------------------------|-------------------------------------|----------------|-------------------|----------------------|------------------------|
| OTs            | Pd(P                                | Ph <sub>3</sub> ) <sub>4</sub> (0.0 | )5 equiv), (   | Cul (0.15         | equiv)               |                        |
| R <sup>1</sup> | -CO <sub>2</sub> R <sup>-</sup> − / | THF - <sup>i</sup> Pi               |                |                   |                      |                        |
|                |                                     |                                     | (E)            | 2 h, ( <i>Z</i> ) | 14 h R <sup>1~</sup> | ~~~CO₂R                |
| entry          | $R^1$                               | $R^2$                               | $\mathbb{R}^3$ |                   | product              | yield / % <sup>a</sup> |
| 1              | Мо                                  | Mo                                  | Ph             | (E)               | 24a                  | 91 <sup>b</sup>        |
| 2              | IVIE                                | NIG                                 | EII            | (Z)               | 24b                  | $84^b$                 |
| 3              | Mo                                  | Mo                                  | тре            | (E)               | 25a                  | 97                     |
| 4              | ivie                                | IVIE                                | 185            | (Z)               | 25b                  | 89                     |
| 5              | Dr                                  | E+                                  | Dh             | (E)               | 26a                  | 86                     |
| 6              | F I                                 | L                                   |                | (Z)               | 26b                  | 83                     |
| 7              |                                     | <i></i>                             |                | (E)               | 27a                  | 95                     |
| 8              | Pr                                  | Et                                  | IBS            | (Z)               | 27b                  | 83                     |
| 9              | <u>برمرکان</u>                      | Mo                                  | Dh             | (E)               | 28a                  | 84                     |
| 10             | 5 5                                 | IVIE                                | F11            | (Z)               | 28b                  | 70                     |
| 11             |                                     | Mo                                  | тре            | (E)               | 29a                  | 93                     |
| 12             | 3                                   | IVIE                                | 100            | (Z)               | 29b                  | 80                     |
| 13             | 1 And the                           | Mo                                  | Ph             | (E)               | <b>30</b> a          | 88                     |
| 14             | - ( <sub>8</sub>                    | INC                                 | ГП             | (Z)               | 30b                  | 76                     |
| 15             | MA 2                                | Ma                                  | TBS            | (E)               | <b>3</b> 1a          | 94                     |
| 16             | ~ ( <sup>-</sup> ) <sub>8</sub>     | MC                                  | 100            | (Z)               | <b>31b</b>           | 96                     |

<sup>*a*</sup> An alkyne (1.50 mmol) in THF (0.5 mL) and <sup>*i*</sup>Pr<sub>2</sub>NH (1.0 mL) was added to a stirred solution of (*E*)- *or* (*Z*)-enol tosylate (1.00 mmol), CuI (0.15 mmol), and Pd((PPh<sub>3</sub>)<sub>4</sub> (0.05 mmol) in THF (1.0 mL) at 20 – 25 °C under an Ar atomosphere. <sup>*b*</sup> <sup>*i*</sup>Pr<sub>2</sub>NEt was used instead of <sup>*i*</sup>Pr<sub>2</sub>NH.

TsCl--NMI-Et<sub>3</sub>N or LiOH. Cross-coupling reactions (Negishi and Sonogashira) were successfully performed to give stereoretentive trisubstituted  $\alpha$ , $\beta$ -unsaturated esters. The present method provides a new avenue for practical and stereocontrolled preparation of trisubstituted olefins.

Acknowledgment. This research was partially supported by Grant-in-Aids for Scientific Research on Basic Areas (B) 18350056, Priority Areas (A) 17035087 and 18037068, and Exploratory Research 17655045 from MEXT. This Letter is dedicated to Professor Ryoji Noyori on the occasion of his 70th birthday.

**Supporting Information Available:** Experimental procedure and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL800480D

<sup>(14)</sup> Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 50, 4467.